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We present a solution to the conservation form (Eulerian form) of the quantum hydrody-
namic equations which arise in chemical dynamics by implementing a mixed/discontinu-
ous Galerkin (MDG) finite element numerical scheme. We show that this methodology is
stable, showing good accuracy and a remarkable scale invariance in its solution space. In
addition the MDG method is robust, adapting well to various initial-boundary value prob-
lems of particular significance in a range of physical and chemical applications. We further
show explicitly how to recover the Lagrangian frame (or pathline) solutions.
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1. Introduction

Quantum hydrodynamics (QHD) has engendered substantial activity in the field of theoretical chemical dynamics, where
one may refer to Wyatt et al. [40] for a comprehensive introductory overview of the numerous recent results emerging from
this blossoming field.
. All rights reserved.
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The basic idea emerging from quantum chemistry in the context of QHD is to employ the time-dependent Schrödinger
equation (TDSE) to solve for the dynamical properties (probability densities, ‘‘particle” velocities, etc.) of chemical systems.
In the same spirit in which the de Broglie–Bohm interpretation (see [17,5,6]) of quantum mechanics may be used to recover
‘‘trajectories” of individual fluid elements along the characteristics of motion of the solution, the QHD equations of Madelung
and Bohm are derived as formally equivalent to the TDSE and thus comprise an alternative route to solutions which generate
quantum trajectories that follow particles along their respective paths (see [40,19] for a comprehensive overview).

These solutions hold particular significance, where, in the context of the QHD formulation, it is possible to resolve the
chemical dynamics of a vast number of reaction mechanisms known to have pathways dominated by quantum tunneling
regimes. Some of these systems include proton transfer reactions (for example see Fig. 1), conformational inversions, biolog-
ically important redox reactions in enzymatic catalysis reactions (see Fig. 2), and proton-coupled electron transfer reactions
(refer to [28,27]). It is not yet clear if these types of methods may also have application at higher energies, for example in the
halo nuclei tunneling occurring in fusion reactions (as seen, for example, in [18]).

Substantial research has been done in quantum hydrodynamics to find the best and fastest computational methodology
for solving this system of equations. In the standard methodology presented using the quantum trajectory method (QTM),
for example, solutions to the QHD equations are found by transforming the system of equations, which is generally posited in
the Eulerian fixed coordinate framework (see [25,19,15,14]), into the same set of equations in the Lagrangian coordinate
framework, which effectively follows solutions along particle trajectories; or along so-called ‘‘Bohmian trajectories.” The
transformation from the Eulerian to the Lagrangian frame leads to a set of coupled equations which solve for two unknowns:
the quantum action Sðt;~rÞ and the probability density or quantum amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffi
.ðt;~rÞ

p
¼ Rðt;~rÞ along the trajectories~rðt; xÞ (e.g.

see [40] box 1.2). The obvious advantage of the Lagrangian framework is reduced computational times, since solutions are
only computed along a set of chosen trajectories; while clearly the disadvantage is the possibility of obscuring structure hid-
den within the continuum of the full solution, which may only emerge properly in convergent numerical schemes, and also
the increased complications of transposing into more complicated settings: such as with functional or time dependencies on
the potential term V, or including dissipative or rotational vector fields.

In addition, the numerical solutions to the above mentioned Lagrangian formulations have demonstrated characteristic
behaviors which introduce certain technical difficulties at the level of formal analysis. First, the system of equations are stiff,
which is to say, solutions to the system may locally or globally vary rapidly enough to become numerical unstable without
reducing numerically to extremely small timesteps. Furthermore, there exists the so-called ‘‘node problem,” which is char-
acterized by singularity formation (see [40] for characterization of node types) along particle trajectories. Another issue
which arises is obtaining unique solutions, since there is not a unique choice of trajectories in the Lagrangian formulation
(see for example Section 6 and Appendix A). And finally, boundary data is often treated without regard to the (often substan-
tial) numerical residuals introduced in the weak entropy case, or taking into account consistency between the TDSE and the
QHD system of equations (see for example [30] and Section 3).

We introduce an alternative formulation to the standard solutions described above in . and S and tracked with respect to
the Lagrangian coordinate frame which is motivated by work of Gardner, Cockburn, et al. (see [15,16,8]). Instead, we keep the
system in its conservation form (instead of in a primitive variable form) in the Eulerian coordinate system (see [25]), and
solve for the density . ¼ .ðt; xÞ and the particle velocity v ¼ vðt; xÞ (instead of the quantum action S). We show that these
solutions may be used to easily recover the variables S and w in a single step; and may with little difficulty be transformed
into their Lagrangian coordinate frame counterpart solutions .ðt;~rÞ;vðt;~rÞ; Sðt;~rÞ and wðt;~rÞ, using the conservation equation
(continuity equation), or by solving for pathlines in the sense of classical mechanics, or by any number of alternative so-
called ‘‘offset methods.” Additionally, our solutions demonstrate a type of resolution invariance, which is to say that the
behavior of our solutions are qualitatively equivalent at varying spatial resolutions, and compare favorably with solutions
to the formally equivalent TDSE. As a consequence, our conservation-based formulation is computationally competitive with
Lagrangian formulations, up to a type of ‘‘formal accuracy” in the trajectory solutions.

Our solutions, as the Lagrangian formulated solutions mentioned above, still demonstrate a stiff behavior. However, also
as the Lagrangian solutions above, and similarly to the classical CFL condition in fluid mechanics, we consider this a prohib-
itive but not insurmountable computational difficulty. On the other hand, our solutions to the conservation form of QHD do
not demonstrate the node problem (at least on Gaussian wavepackets) as expected, as the only type of node our formulation
Fig. 1. Here we have the intramolecular rearrangement of the aryl radical 2,4,6-tri-tert-butylephenyl to 3,5-di-tert-butylneophyl (see [7] for details).



Fig. 2. Here we show an enzymatic catalysis – an aromatic amine dehydrogenase (AADH) with a tryptophan tryptophyl quinone (TTQ) prosthetic group
catalyzing the oxidative deamination of tryptamine with an electron transfer to an arsenate reductase enzyme (see [7,27] for details, PDB codes: 1nwp
(azurin), 2agy (AADH)).
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exhibits is for . � 0, which never occurs if we add a numerical ambient density .A to the initial density qjt¼0. The solution is
stable when the ambient density is set to � 11 orders of magnitude smaller than maxXð.Þ over a computational domain X.
We maintain that the addition of .A to the initial density does not significantly change the numerical solution of the system
of partial differential equations, while introducing the substantial benefit of significantly improving its stability. Again, this
behavior compares favorably with solutions to the TDSE, which also do not demonstrate the node problem. On the other
hand, computing solutions in the Lagrangian frame still offers substantial computational efficiency when compared to those
in the Eulerian frame; due simply to relative density of solutions.

We begin in Section 2 by presenting the governing equations, then rescaling these equations in time for substantial
improvement of numerical tractability. Next we present the details of a computationally well-posed finite element discret-
ization scheme leading to our approximate (numerical) solution. The scheme is based on a discontinuous Galerkin method
for the QHD conservation laws and a mixed finite element method for the Bohmian quantum potential, which is inspired by
[9]. In Section 3 we briefly derive the basic equations, and discuss the rather strong dependence on the formal and numerical
equivalencies in the boundary data. In Section 4 we derive an analytic test case which allows us to find the relative error in
the discontinuous Galerkin mixed method, which shows that our formulation is near to numerically exact everywhere but at
the boundaries (which is expected). We proceed in Section 5 by testing the standard case of a hydrogen atom tunneling
through an Eckart potential barrier, compare these results to a finite difference scheme for the TDSE, and then show how
to use the continuity equation to recover the Lagrangian, or Bohmian, trajectories. Next, in Section 6, we show how to com-
pute pathlines, recover the variables q;u;w and S in both the Eulerian and Lagrangian frames, and compare the way in which
these solutions relate to each other. We finish with some concluding remarks in Section 7.

2. Conservation formulation of quantum hydrodynamics

Consider the following system of equations for ðs; xÞ 2 Ts �X, motivated by [40], where we have transformed the solution
space from the usual Lagrangian coordinate frame into the conservation form of the Eulerian coordinate frame:
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@s.þrx � ð.vÞ ¼ 0; ð1Þ
@sð.mvÞ þ rx �Pþ .rxV ¼ 0; ð2Þ
with initial conditions
.s¼0 ¼ .0; and vs¼0 ¼ v0;
where . ¼ .ðs; xÞ is the probability density corresponding to conservation Eq. (1), and v ¼ vðs; xÞ is the volume velocity cor-
responding to the momentum density .p ¼ .mv in Eq. (2), where the mass m is constant. Here V corresponds to the poten-
tial energy surface, where in keeping with the usual formulation in chemical applications in one dimension V may be
generally thought of as a model potential (e.g. an Eckart, Lennard–Jones or electrostatic potential).

The quantum stress P is given to obey,
P ¼ .mv � v þ .�1 �h2

4m
ðrx.Þ2

( )
� �h2

4m
r2

x.;
or alternatively
m�1P ¼ .v � v � .�h2

4m2r
2
x log .;
with the Bohmian quantum potential given as Q ¼ �h2

2m Dx
ffiffiffi.p� �
=
ffiffiffi.p (note that this term is only defined up to a sign conven-

tion, see for example Ref. [19,24] versus Ref. [40]), such that the nonlinear dispersion relation is given by,
.�h2

2m
rx

Dx
ffiffiffi.pffiffiffi.p

� �
¼ �h2

4m
r � .r2

x log .
� �

; ð3Þ
yielding the alternative form of (2):
@tð.mvÞ þ rx � ð.mv � vÞ � .rxQþ .rxV ¼ 0: ð4Þ
Let us rescale (1) and (4) by setting s ¼
ffiffiffiffiffi
m
p

t and solving for a rescaled solution u and q in the time variable t, such that
uðt; xÞ ¼

ffiffiffiffiffi
m
p

vð
ffiffiffiffiffi
m
p

t; xÞ and qðt; xÞ ¼ .ð
ffiffiffiffiffi
m
p

t; xÞ such that (1) and (4) for ðt; xÞ 2 T �X become:
@tqþrx � ðquÞ ¼ 0; ð5Þ
@tðquÞ þ rx � ðqu� uÞ � qrxQþ qrxV ¼ 0: ð6Þ
We solve (5), (6) using a mixed discontinuous Galerkin finite element method. We define the state vector
U ¼ ðq;quÞT ;
the advective flux vector
f ¼ ðqu;qu� uÞT ;
and the source vector
S ¼ ð0;qrxðV �QÞÞT :
Then we can rewrite (1), (2) as
Ut þ f x þ S ¼ 0: ð7Þ
Consider the following discretization scheme motivated by [13,30] (and illustrated in the one dimensional case in Fig. 3).
Take an open X � R with boundary @X ¼ C, given T > 0 such that QT ¼ ðð0; TÞ �XÞ for bX the closure of X. Let T h denote the
partition of the closure X, such that taking bX ¼ ½a; b	 provides the partition
a ¼ x0 < x1 � � � < xne ¼ b
comprised of elements Gi ¼ ðxi�1; xiÞ 2 T h such that T h ¼ fG1;G2; . . . ;Gneg. The mesh diameter h is given by
h ¼ supG2T h

ðxi � xi�1Þ such that a discrete approximation to X is given by the set Xh ¼ [iGi n fa; bg. Each element of the par-
tition has a boundary set given by @Gi ¼ fxi�1; xig, where elements sharing a boundary point @Gi \ @Gj – ; are characterized
as neighbors and generate the set Kij ¼ @Gi \ @Gj of interfaces between neighboring elements. The boundary @X ¼ fa; bg is
characterized in the mesh as @X ¼ fx0; xneg and indexed by elements Bj 2 @X such that X̂ ¼ T h [Kij [ @X. Now for
I � Zþ ¼ f1;2; . . .g define the indexing set rðiÞ ¼ fj 2 I : Gj is a neighbor of Gig, and for IB � Z� ¼ f�1;�2; . . .g define
sðiÞ ¼ fj 2 IB : Gi contains Bjg. Then for Si ¼ rðiÞ [ sðiÞ, we have @Gi ¼ [j2SðiÞKij and @Gi \ @X ¼ [j2sðiÞKij.

We define the broken Sobolev space over the partition T h as
Wk;2ðXh; T hÞ ¼ fv : v jGi
2Wk;2ðGiÞ 8Gi 2 T hg:



Fig. 3. The discretization of X, distinguishing nodes, elements and neighbors, with boundary @X ¼ fa; bg in dimension N ¼ 1.
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Further, approximate solutions to (1), (2) will exist in the space of discontinuous piecewise polynomial functions over X re-
stricted to T h, given as
Sd
hðXh; T hÞ ¼ fv : v jGi

2 PdðGiÞ 8Gi 2 T hg
for PdðGiÞ the space of degree 6 d polynomials on Gi.
Choosing a set of basis functions N‘ 2 PdðGiÞ; ‘ ¼ 0; . . . ; d for PdðGiÞwe can denote the state vector at the time t over Xh, by
Uhðt; xÞ ¼
Xd

‘¼0

U i
‘ðtÞN

i
‘ðxÞ; 8x 2 Gi; ð8Þ
where the Ni
‘’s are the finite element shape functions in the DG setting, and the U i

‘’s correspond to the nodal unknowns. We
characterize the finite dimensional test functions
uh 2W2;2ðXh; T hÞ; by uhðxÞ ¼
Xd

‘¼0

ui
‘N

i
‘ðxÞ;
where ui
‘ are the nodal values of the test functions in each Gi.

Assuming that the source term S is sufficiently smooth, we let U be a classical solution to (7) and multiply through by uh

and integrating such that:
d
dt

Z
Gi

U � uh dxþ
Z
Gi

f x � uh dx ¼ �
Z
Gi

S � uh dx: ð9Þ
Integrating (9) by parts gives
d
dt

Z
Gi

Uh � uh dxþ
Z
Gi

ðf � uhÞx dx�
Z
Gi

f � uh
x dx ¼ �

Z
Gi

S � uh dx: ð10Þ
Let ujKij
and ujKji

denote the values of u on Kij considered from the interior and the exterior of Gi, respectively. It should be
noted that for Kij 2 C, the restricted functions uhjKji are determined up to a choice of boundary condition, which we will dis-
cuss in more detail in Section 3. We approximate the first term in (10) by,
d
dt

Z
Gi

Uh � uh dx 
 d
dt

Z
Gi

U � uh dx; ð11Þ
the second term using an advective numerical flux Ui, by
~UiðUhjKij
;UhjKji

;uhÞ ¼
X
j2SðiÞ

Z
Kij

UðUhjKij
;UhjKji

;nijÞ � uhjKij
dK 


Z
Kij

XN

l¼1

ðf hÞl � ðnijÞluhjKij
dK; ð12Þ
for nij the unit outward pointing normal and where N is the dimension, and the third term on the left in (10) by:
HiðUh;uhÞ ¼ �
Z
Gi

f h � ðuhÞx dx 
 �
Z
Gi

f � ðuhÞx dx: ð13Þ
Using (11)–(13), taking the convention that
X ¼
X
Gi2T h

X i;
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and setting the inner product
ðah;bhÞXG
¼
X
Gi2T h

Z
Gi

ah � bh dx;
we define an approximate solution to (9)–(17) as Uh for all t 2 ð0; TÞ satisfying:
Discontinuous Galerkin method for the QHD conservation laws
ð1Þ Uh 2 C0ð½0; T	; Sd
hÞ;

ð2Þ d
dt
ðUh;uhÞXG

þ eUðUh;uhÞ þHðUh;uhÞ þ ðSh;uhÞXG
¼ 0;

ð3Þ Uhð0Þ ¼ U0:

ð14Þ
To compute the source term S, we approximate the Bohmian quantum potential using a mixed finite element method. In
particular, we know that at each time t, the quantum potential Q satisfies the equations:
Q ¼ �h2

2m
rx � qffiffiffiffiqp and q ¼ rx

ffiffiffiffi
q
p

: ð15Þ
Let # 2 L2ðXÞ and 1 2 Hðdiv;XÞ. Then multiplying (15) by # and 1, respectively, and integrating by parts over X results in:
Z
X
Q#dx ¼

Z
X

�h2

2m
rx � qffiffiffiffiqp #dx; ð16ÞZ

X
q � 1dx ¼ �

Z
X

ffiffiffiffi
q
p rx1dxþ

Z
C

ffiffiffiffi
q
p

1 � ndC: ð17Þ
Choosing finite dimensional subspacesLh � L2ðXÞ andHh � Hðdiv;XÞ, a mixed finite element method for the Bohmian quan-
tum potential is then: find Qh : ½0; T	 �X! R;qh : ½0; T	 �X! R3 such that for all t 2 ½0; T	; QhðtÞ 2 Lh and qh 2 Hh satisfy:
Mixed method for the Bohmian quantum potential
ð1ÞðQh; #hÞX ¼
�h2

m
rx � qhffiffiffiffiffiffiqh
p ; #h

� �
X

;

ð2Þðqh; 1hÞX ¼ �ð
ffiffiffiffiffiffi
qh
p

;rx1hÞX þ ð
ffiffiffiffiffiffi
qh
p

; 1hnÞC:
ð18Þ
Since we wish S 2 L2ðXÞ, we choose Lh to be a continuous finite element space, and we choose Hh to be an HðdivÞ-conforming
space (e.g. Raviart–Thomas elements [34], such that in one dimension, Raviart–Thomas elements collapse to be standard
continuous finite elements). Eqs. (14) and (18) define our mixed/discontinuous Galerkin method in semi-discrete form. Com-
putationally, we must also discretize time, as shown in Sections 4 and 5.

Our MDG formulation employs a numerical scheme which depends on a weak coupling between an advective RKDG
scheme and an elliptic mixed method scheme, wherein little is explicitly known with respect to rigorous stability and con-
vergence results regarding the specific nature of the weak coupling between these two systems. However, the system is quite
well-behaved in each of its components, where stability and convergence results are well-known both for RKDG schemes of
advective systems (see [10]) as well as mixed method formulations for elliptic equations (see [1]), and further we demon-
strate below by way of numerical experiments that the system shows good behavior with respect to various error estimates.

It is worth noting that in the Lagrangian formulation the primitive variables ðq;uÞ are accompanied by the quantum action
function S and the quantum wavefunction w. We will explicitly derive these terms in Section 5 from the solution (14). We
further note that a pure discontinuous Galerkin method was implemented as an alternative approach to the MDG method
solution shown in (14). This treatment used a naive implementation of the dispersive flux formulation shown in [23]. In this
paper it was shown that a pure discontinuous Galerkin treatment of an advective–dispersive equation required numerical
fluxes that depend nonlinearly on the direction of the advective velocity in order to arrive at a linearly stable numerical
scheme. In our naive implementation of the pure DG treatment for the system (1), (2) (which are preliminary results not
shown in this paper), however, we utilized standard numerical fluxes which do not exhibit such a dependence. Our numer-
ical results from this formulation seemingly show soliton/compacton behavior, solutions which are well-known in the ‘for-
mally’ equivalent formulation of Korteweg fluids (see [22,12,21,4]) – up to turbulence effects etc., as explained in Section 3 –
which model diffuse fluid interfaces as well as having a phenomenological interpretation in the context of the nonlinear
Schrödinger equation (see [36]) and the Gross–Pitaevskii equation (see [2,20]) given nearly identical initial conditions to
the ones we use in Section 5. However, it is unknown at this point (at least to the authors’ knowledge) if this behavior is
the result of the exact solution or numerical instability, which warrants further study. Furthermore, in the context of chem-
ical dynamics it is not clear that these types of solutions carry physical significance, and so we have isolated our analysis to
the MDG formulation presented in (14).

3. Boundary treatment

A recurring difficulty in constructing numerical methods for initial boundary value systems of partial differential equa-
tions for physical systems is the issue of how to prescribe mathematically consistent boundary conditions which accommo-
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date dynamic (physical) boundary data. It turns out that this issue is a cause of both numerical and mathematical difficulties
in establishing the formal equivalencies between the TDSE and the QHD system of equations. We show this behavior explic-
itly in an example in Section 5, but let us first examine the mathematical source of this difficulty.

Recall that the system presented in (1), (2) is derived explicitly from the TDSE. That is, we have set w ¼ ReiS=�h, and want to
expand the solution of the Schrödinger equation in one unknown and one equation in w ¼ wðt; xÞ into a system of partial dif-
ferential equations in the unknowns R ¼ Rðt; xÞ and S ¼ Sðt; xÞ. To make this a well-posed system we of course need a system
of two equations, where both unknowns must be assigned distinct boundary conditions. First take the following form of the
Schrödinger equation:
�Dx þ
2m

�h2 V
� �

w ¼ 2mi
�h

@tw; ð19Þ
and plug in w ¼ ReiS=�h such that expanding gives for the time derivative,
2mi
�h

@tw ¼
2mi

�h
@

@t
ðReiS=�hÞ ¼ 2mi

�h
eiS=�h@tR�

2m

�h2 ReiS=�h@tS; ð20Þ
and for the spatial component
Dxw ¼ DxðReiS=�hÞ ¼ rx � rxðReiS=�hÞ ¼ rx � eiS=�hrxRþ i
�h

ReiS=�hrxS
� �

¼ eiS=�h DxRþ 2i
�h
rxSrxR� R

�h2 ðrxSÞ2 þ i
�h

RDxS
� �

: ð21Þ
Putting (20) and (21) back into (19) and canceling a factor of eiS=�h we obtain:
R
2m

�h2 V ¼ DxRþ 2i
�h
rxSrxR� R

�h2 ðrxSÞ2 þ i
�h

RDxSþ 2mi
�h

@tR�
2m

�h2 R@tS; ð22Þ
Now, collecting the imaginary parts of (22),
�2mi
�h

@tR�
2i
�h
rxSrxR� i

�h
RDxS ¼ 0;
and multiplying through by �h=2m provides:
�@tR�
1
m
rxRrxS� 1

2m
RDxS ¼ 0:
Additionally multiplying through by �2mR gives,
m@tR
2 þrxR2rxSþ R2DxS ¼ 0;
where applying the product rule yields the conservation form:
m@tR
2 þrx � ðR2rxSÞ ¼ 0: ð23Þ
Clearly setting R ¼ ffiffiffi.p and using the Madelung relation v ¼ 1
mrxS for m a constant m 2 R leads to the usual conservation of

mass equation:
@t.þrx � ð.vÞ ¼ 0: ð24Þ
Similarly putting together the real parts of (22) gives:
2mR

�h2 @tS� DxRþ R

�h2 ðrxSÞ2 þ 2m

�h2 RV ¼ 0;
such that upon multiplication through by �h2
=2m2R we have:
1
m
@tS�

�h2

2m2R
DxRþ 1

2m2 ðrxSÞ2 þ 1
m

V ¼ 0:
Taking a derivation in x then yields
1
m
@trxS�rx

�h2

2m2R
DxR

 !
þrx �

1
2m2 ðrxSÞ2
� �

þ 1
m
rxV ¼ 0:
Now again we substitute the important Madelung relation v ¼ 1
mrxS giving the form:
@tv þ
1
2
rxðv � vÞ �

�h2

2m2rxðR�1DxRÞ þ 1
m
rxV ¼ 0: ð25Þ
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The Madelung relation, v ¼ 1
mrxS, is of course equivalent to setting v to be an irrotational field, since for any field

S; rx �rxS ¼ 0. Thus for an irrotational vector field v , using that rxðv � vÞ ¼ 2ððv � rxÞv þ v �rx � vÞ, we may rewrite
(25) as,
@tv þ ðv � rxÞv �
�h2

2m2rxðR�1DxRÞ þ 1
m
rxV ¼ 0;
so that multiplying by .m yields,
.@tmv þ ð.mv � rxÞv � .
�h2

2m
rxðR�1DxRÞ þ .rxV ¼ 0:
Combining this equation with (24) yields:
@tð.mvÞ þ rx � ð.mv � vÞ � .rxQþ .rxV ¼ 0; ð26Þ
for Q the Bohmian quantum potential given as Q ¼ �h2

2m Dx
ffiffiffi.p� �
=
ffiffiffi.p . It is important to see that the formal equivalence be-

tween (19) and (26) is entirely dependent on Madelung’s irrotational condition, which makes turbulent effects, for example,
vanish. In the alternative derivation of the QHD regime, using moment expansions (see for example [19,40]) this restriction
is not necessary.

Thus we have arrived at our system of quantum hydrodynamic equations:
@t.þrx � ð.vÞ ¼ 0;
@tð.mvÞ þ rx � ð.mv � vÞ � .rxQþ .rxV ¼ 0

ð27Þ
requiring initial conditions
qjt¼0 ¼ q0 and ujt¼0 ¼ u0;
and numerically requiring explicit boundary conditions qb and ub on an irrotational vector field v . Additionally, and as an
important aside, the formal equivalence we have derived is constructed without mention of boundary conditions, which
is satisfied over ð0; TÞ � R3, but on a discrete domain X � R3 is a bit over optimistic, and as we will see below, does not
in general hold.

That is, the TDSE code (see Section 5) sets the initial data wi;b on the boundary as a time-independent condition, so the
boundary value wb � wb ¼ wi;b is enforced for all t 2 ½0; TÞ; a Dirichlet condition which, as is shown in Section 5, has the effect
of generating boundary oscillations as the wavefunction spreads in time. Further, since wi;b must be decomposed into Ri;b and
Si;b to make sense in the QHD formulation (27), these yield two Dirichlet conditions which can be easily implemented, but are
unstable in the QHD regime since Ri;b exponentially decays on the boundary, and thus as a consequence is not numerically
invertible; as it must be in the QHD formulation. These may however be approximated by setting qi;b ¼ qA, the ambient den-
sity, and ui;b ¼ � 1

m

R
Gb
rSdx for Gb the boundary element.

However, these BCs still are not well-posed in the QHD regime for the following reason. First we compute the entropy
inequality for the rescaled version of (27) shown in (5) and (6). We may compute the important classical/quantum entropy
satisfying for non-boundary terms that:
d
dt

Z
X

q
jv j2

2
þ �h2ðrx

ffiffiffiffiqp Þ2
4m

þ qV

 !
dx 6 0: ð28Þ
We arrive at this system by multiplying the momentum equation from (27) by v and integrating in space (e.g. the domain
is some X # R3), such that rearranging we find
Z

X
v@tðqvÞ þ vrx � ðqv � vÞdx�

Z
X
qvrxQdxþ

Z
X
qvrxV dx ¼ 0: ð29Þ
The product rule allows us to expand the first term on the LHS as:
Z
X
jvj2ð@tqþrx � ðqvÞÞ þ qv@tv þ qjvj2rx � v dx;
where jv j2 ¼ v � v . Using the mass conservation equation twice from (27) and applying the divergence theorem we find that,
Z
X

vð@tðqvÞ þ r � ðqv � vÞÞdx ¼ d
dt

Z
X
q
jv j2

2
dxþ 1

2

Z
X
rx � ðqv3Þdx: ð30Þ
Next, using the dispersion relation from the Bohm quantum potential the third term on the left yields:
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Z
X
qvrxQ ¼

�h2

2m

Z
X
qvrx

Dx
ffiffiffiffiqpffiffiffiffiqp

� �
dx ¼ � �h2

2m

Z
X

1ffiffiffiffiqp rx � ðqvÞDx
ffiffiffiffi
q
p

dxþ �h2

2m

Z
X
rx �

ffiffiffiffi
q
p

vDx
ffiffiffiffi
q
pð Þdx

¼ �h2

2m

Z
X
rx

1ffiffiffiffiqp rx � ðqvÞ
� �

rx
ffiffiffiffi
q
p þrx �

ffiffiffiffi
q
p

vDx
ffiffiffiffi
q
pð Þ

� �
dx� �h2

2m

Z
X
rx

1ffiffiffiffiqp rx � ðqvÞrx
ffiffiffiffi
q
p� �

dx

¼ �h2

2m

Z
X
rx

ffiffiffiffi
q
p

@trx
ffiffiffiffi
q
p

dxþ boundaryterms: ð31Þ
Finally the source term V ¼ VðxÞ upon integrating by parts gives
Z
X
qv � rxV dx ¼ �

Z
X

Vrx � ðqvÞdxþ
Z

X
rx � ðVquÞdx ¼ d

dt

Z
X
qV dxþ

Z
X
rx � ðVqvÞdx: ð32Þ
Then we have recovered (28) as an equality up to the boundary terms in (30)–(32). To recover the mathematical well-
posedness of the system these boundary terms must either vanish or be bounded and positive (or negative) definite. One
such choice of boundary data is, for example, vb � 0. Another is the pair of conditions rx

ffiffiffiffiffiffiqb
p � 0 and Vb � 0 for all

t 2 ½0; TÞ, and so forth.
The first set of boundary data, with vb � 0, may be set with qb � qA. Since the action behaves as a phase, this seems a

reasonable approximation, since it effectively assumes that up to a constant of integration that the phase is constant over
boundary elements rSb � 0. These conditions are then mathematically consistent with the system of Eq. (27), but have
the physical effect of generating ‘‘inlet/outlet” boundary layers, caused by the value of qb.

Perhaps a more natural boundary condition is given by setting,
Un
hjKji
¼ Un

hjKij
;

where Un
h is the numerical solution at timestep tn, as explained in detail in Section 4, and Kij 2 @X. This boundary type is a

first order approximation to a transmissive or radiative condition that treats the boundary like a ‘‘ghost cell,” and allows den-
sity and momentum to leave the domain as though falling into vacuum, while allowing no density or momentum to enter.
This condition approximates to the first order, the effect of ‘‘not setting boundary conditions at all,” and thus not badly per-
turbing the system (27) away from its natural behavior, nor generating reflecting behavior, which in some contexts – such as
a chemical reaction occurring in a solvent bath – are difficult to physically interpret.

4. Two numerical test cases

We wish to test the accuracy of our MDG method formulation by solving for analytic test solutions. In order to do this we
choose a numerical flux for (14) and restrict to spatial dimension N ¼ 1. For the advective flux U we implement the local
Lax–Friedrich’s flux UlLF satisfying
Z

Kij

UlLF � uh dK ¼ 1
2

Z
Kij

ðf ðUhÞjKij
þ f ðUhÞjKji

Þ � nijuhjKij
dK� 1

2

Z
Kij

ðSpecrðC0ÞÞððUhÞjKij
� ðUhÞjKji

Þ � nijuhjKij
dK;
for nij the outward unit normal and SpecrðC0Þ the spectral radius of C0; the Jacobian matrix of the advective flux
JUf ðUÞ ¼ C0ðUÞ which may be represented by the following 2� 2 matrix,
C0ðUÞ ¼
0 1
�u2 2u

� �
: ð33Þ
Summing over the elements of the mesh this term satisfies:
2 eUlLFðUh;uhÞ ¼
X
Gi2T h

X
j2SðiÞ

Z
Kij

ðf ðUhÞjKij
þ f ðUhÞjKji

Þ � nijuhjKij
dK�

X
Gi2T h

X
j2SðiÞ

Z
Kij

ðSpecrðC0ÞÞððUhÞjKij
� ðUhÞjKji

Þ

� nijuhjKij
dK: ð34Þ
Next we discretize in time. That is, we denote a partition of [0,T] by
0 ¼ t0 < t1 � � � < tT ¼ T;
for a timestep given as Dtn ¼ tnþ1 � tn, and let Un
h denote the solution at timestep tn. Thus we implement the following for-

ward Euler scheme:
@Uh

@t

 Unþ1

h � Un
h

Dtn ;
which, along with the implementation of a slope limiter in the conservation variables ðq;quÞ given by van Leer’s MUSCL
scheme (as shown in [37,38]), allows us to explicitly solve (14). That is, we define an approximate solution as Un

h for all
tn such that n ¼ 0; . . . ; T satisfying:
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ð1Þ Un
h 2 Sd

h; Q
n
h 2 Lh and qn

h 2 Hh;

ð2Þ Unþ1
h � Un

h

Dtn ;uh

 !
XG

þ eUðUn
h;uhÞ þHðUn

h;uhÞ þ ðS
n
h;uhÞXG

¼ 0;

ð3Þ Qn
h; #h

	 

X ¼

�h2

m
rx � qn

hffiffiffiffiffiffi
qn

h

p ; #h

 !
X

;

ð4Þ qn
h; 1h

	 

X ¼ �

ffiffiffiffiffiffi
qn

h

q
;rx1h

� �
X
þ

ffiffiffiffiffiffi
qn

h

q
; 1hn

� �
C
;

ð5Þ Uh
0 ¼ Uhð0Þ:

ð35Þ
The above formulation lends itself naturally to a staggered scheme. First, given Un
h one solves steps 3 and 4 for Qn

h and qn
h,

which provides Sn
h , allowing us to solve for Unþ1

h in step 2. It should be noted that since the time-discretization scheme chosen
is explicit and the equations in consideration are third-order in space, the above formulation is subject to a rather limiting
CFL condition of the form dt < Ch3. While this CFL condition is not insurmountable for the examples considered in this paper,
it may become cumbersome for multidimensional problems.

Now let us construct the first of our test cases. Consider the dimension N ¼ 1 case and let u � 0 on X for (5), (6), such that
@sq ¼ 0. Up to a choice of boundary conditions, upon integration we have for (6) that
Q ¼ C � V ;
such that choosing a C � V we find the following second order ordinary differential equation:
q00 � q�1ðq0Þ2 ¼ 0;
whose solution is q ¼ ex. We therefore solve for the approximate solution of (14) using the above scheme, with initial con-
ditions q0 ¼ ex;u ¼ 0; V ¼ C and m ¼ 1836 the mass of a proton in Hartree atomic units (au). The boundaries are set to the
weak entropy boundary condition formulation as presented in [10,3,26,30]. We graph the relative error of our approximate
solution qh to the exact numerical representation qa in Fig. 4 using piecewise linear basis functions. We find that our approx-
imate solution is equivalent to the exact solution up to machine precision and the accuracy of our MDG scheme in the inte-
rior of the domain, while error accumulates on the boundary @X and slowly propagates into the domain over time. This
boundary error dominates the error in the interior of the domain.

Through further numerical tests, we have concluded that the boundary error (and its propagation) is primarily due to the
implementation of weak entropy boundary conditions. More specifically, as we discuss in more detail in Section 5, the
boundary oscillations are largely due to reflections brought about by small perturbations in the density and velocity fields
in tandem with the weak entropy implementation of the Dirichlet conditions qb ¼ ex and ub ¼ 0 on the boundary. In order to
isolate the accuracy of our method in the absence of the weak entropy boundary conditions, we construct a second test case.
Here we manufacture a periodic solution in q;u and V. That is, set u � 0; q � sin xþ C0; C � 0, such that
Here we show the relative error introduced by the weak entropy boundary conditions for a ¼ 0 and both b ¼ 10 and b ¼ 50. The boundary data (the
on the right) show only the relative error on element b of @X for b ¼ 10 and b ¼ 50, respectively. Here we use 100 element meshes, piecewise linears,
orward Euler method in time. The timestep size is Dt = 0.003 Dt = 0.0167 respectively, which satisfies the CFL condition for these examples.
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q00 � q�1ðq0Þ2 ¼ 4m

�h2 ðV � CÞ; ð36Þ
while setting
V � �4m

�h2 sin xþ cos2 x
sin xþ C0

� �
;

for C0 > 1 a constant. Then using this periodic solution with periodic boundary conditions, it is easy to see that the L2-error
convergences in the mesh refinement case, as illustrated in Fig. 5, given fixed endtime T, piecewise linears, and using the
forward Euler scheme with sufficiently small time steps so that spatial errors always dominate.

We have performed further numerical experiments on the L2 error in the mesh refinement case and have found, for a fixed
time T, that the L2 error consistently scales like O(hd+1) for mesh diameter h and polynomial order d basis functions (provided
that the time-discretization scheme and timestep size are chosen such that spatial errors dominate). This result is not en-
tirely unexpected, given that similar behavior was noted in [23] for numerical experiments on the one dimensional KdV
advective-dispersion equation (which may be viewed as a simplified model equation of (2)) in the pure DG regime, which
demonstrate an improvement on the rigorous error bounds proven in [39] for the same KdV equation in one dimension
which were shown to be of order O(hd+1/2).

5. Tunneling in TDSE and QHD

We proceed by testing a relatively standard example in quantum chemistry, given by a propagating Gaussian packet in
the direction of a model Eckart potential barrier. We solve the following one dimensional system:
@tqþ @xðquÞ ¼ 0; ð37Þ
@tðquÞ þ @xðqu2Þ � q@xQþ q@xV ¼ 0; ð38Þ
with initial conditions
q0 ¼ qA þ
1ffiffiffiffiffiffiffiffiffiffi
2pl

p !
e
�ðx�x0 Þ

2

2l and u0 ¼ ðaV0Þ1=2
; ð39Þ
where the Eckart potential is given by
VðxÞ ¼ V0 sech2 1
2
ðx� x1Þ

� �
: ð40Þ
As is conventional in quantum hydrodynamics, the mass is set to approximate the hydrogen (proton) mass m � 2000 au
(in Hartree atomic units), qA � 10�10 is a numerical background density for division, x0 centers the Gaussian packet, x1 cen-
ters the potential, l is the variance of the distribution, a is a constant a 2 R and V0 is the barrier height (which we may vary,
so some constant V0 2 R). In the quantum regime (when classical barrier transmission is not present), the initial velocity u0

is often chosen to satisfy the following condition on the initial kinetic energy K0 ¼ 1
2 u2

0 ¼ 1
4 V0.
The L2-error of the periodic ODE solution from (36)], where qn is the numeric solution and qe is the exact solution. Here, by maxðkqn � qekÞ and
¼ 0:042 we mean the maximum over the space of mesh refinements.
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The background ambient value qA is required in order to satisfy the mathematical and numerical well-posedness of the
system such that the behavior of the system is not perturbed away from its proper character by compounding residual
behavior, as shown in Section 3. Furthermore, from a phenomenological point of view, this value is nonrestrictive and easily
physically justified – for example, for a chemical reaction occurring in a solvent bath, or, similarly, any process occurring
away from vacuum.

The discretization proceeds as in Sections 2 and 4, where we adopt the local Lax–Friedrich’s advective flux with van Leer’s
MUSCL slope limiting scheme. Next we implement a standard explicit Runge–Kutta time discretization (see [10,35,30], or
[29] for explicit details).

Now we solve the resultant system using for our initial data (39), (40) explicitly that l ¼ 0:16;a ¼ 2; x0 ¼ 3 and x1 ¼ 6, such
that,
q0 ¼ 10�10 þ 1ffiffiffiffiffiffiffiffiffiffi
2pl

p !
e
�ðx�3Þ2

0:32 and u0 ¼ ð2V0Þ1=2
;

with potential:
VðxÞ ¼ V0 sech2 1
2
ðx� 6Þ

� �
:

It is worth noting that we have thus chosen a kinetic energy which is in the context of a mixed classical-quantum regime;
which is just to say that some classical trajectories transmit over the barrier, in addition to those that tunnel quantum
mechanically. For boundary data we use the approximate well-posed weak entropy implementation of the Dirichlet condi-
tions discussed in Section 3:
qb ¼ qA ¼ 10�10 and ub ¼ 0:
We compare our solution to a finite difference scheme for the TDSE provided by Wyatt [40] in order to test the accuracy of
our formulation. The TDSE has equivalent initial settings, while the boundary conditions are given naturally via wb ¼ wi;b as
discussed in Section 3.

In Fig. 6 the TDSE and QHD with Dirichlet weak entropy boundary data are compared, where for the QHD solution we
have used second order polynomials, k ¼ 2 Runge–Kutta time accuracy, h ¼ 0:025, and Dt ¼ 0:4472 ðauÞ. It is clear that
the two solutions have the same qualitative behavior. However they do show fundamentally different quantitative behav-
iors. Analysis has shown that the two most prevalent sources of error that distinguish these two solutions are numerical dif-
fusion and boundary oscillations. The boundary oscillations occur due to the approximations discussed in Section 3, where
the Dirichlet conditions clearly generate boundary oscillations in both solutions. These oscillations caused by the Dirichlet
conditions, however, have a slightly different character in the QHD and TDSE formulations. This is because, as previously dis-
cussed in Section 3, the Dirichlet restriction on the wavefunction wi;b at the boundary is decomposed into q and u in the QHD
case (see Section 3 for the specifics), and in order to maintain well-posedness of solutions an ambient qA is added to the ini-
tial density. The difference in these boundary oscillations is noticable at the late timesteps in Fig. 6 near the boundary edges.
It is easy to eliminate these substantial boundary oscillations caused by the reflections due to the Dirichlet conditions by
simply implementing the transmissive boundary conditions discussed in detail below. On the other hand, the second source
of error in the two solutions, the numerical diffusion, is a signature of the slope limiter in the QHD formulation and is shown
in greater detail in Fig. 7. Here we confirm that the MUSCL slope limiting scheme is adding a type of ‘‘artificial numerical
diffusion” to the QHD solutions. We have found that choosing a less restrictive slope limiter, such as the flux limiter of Osher
presented in [32], does stably reduce the numerical diffusion in our solutions.

Now, we again solve our system with (43) using for (39) and (40) that l ¼ 0:16;a ¼ 2; x0 ¼ 3; x1 ¼ 6, however now we
introduce the transmissive boundary condition:
Un
hjKji
¼ Un

hjKij
; ð41Þ
as discussed in Section 3. In Fig. 8 it is clear that the behavior between the solutions with transmissive and approximate solu-
tions using Dirichlet conditions is quite distinct, and that boundaries are, so to speak, felt in the interior solution even before
significant density has reached @X. Additionally, the boundary oscillations, caused by reflections at the boundary by imple-
mentation of the Dirichlet conditions, are not present in the transmissive boundary implementation. It is worth noting that
one might expect some oscillations due to the weak entropy implementation of the transmissive boundary conditions – as
shown in (41) – that were discussed in Section 4. Indeed, this is the case, but as shown in Section 4 the oscillations due to the
weak entropy implementation scale quite well as relative error, and in the case of the transmissive solution shown in Fig. 8,
are several orders of magnitude smaller than the oscillations produced by the Dirichlet boundary reflections.

We may now recover trajectories, or characteristics, of the solution by using the fact that (1) is satisfied at every time step
(note that we show the alternative method of integrating velocity ‘‘pathlines” in Section 6). We may think of this equation as
a kind of ‘‘conservation of density” here, and thus we simply employ Reynold’s transport theorem (RTT):
@

@t

Z
~XðtÞ

qdxþ
Z

~CðtÞ
qurel � ndx ¼ 0; ð42Þ



Fig. 6. The top graphs compare solutions to the TDSE and QHD system in the so-called ‘‘eyeball norm,” for the forward Euler scheme. The bottom solution
shows the nontrivial formal difference. Here x refers to the xth meshpoint.

Fig. 7. We show the diffusive noise profile minðqQHD;10�3Þ in the QHD solution, and the difference minðqTDSE;10�3Þ �minðqQHD;10�3Þ. Here x refers to the
xth meshpoint.
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Fig. 8. We show the absolute difference between the QHD solution using the approximate boundary data from Fig. 6 denoted qw with the transmissive
boundary formulation from (41) denoted qT . Here x refers to the xth meshpoint.
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where urel is the relative velocity of the fluid with respect to the moving boundary eCðtÞ. First consider the case when uðaÞ 
 0
such that we may choose eXðtÞ ¼ ða; yðtÞÞwhere yðtÞ is the moving boundary treated as an unknown. By assumption and con-
struction, urelðaÞ ¼ 0, whereas for a trajectory we require urelðyÞ ¼ 0. Then integrating (42) in t we find
Z yðtÞ

a
qdx ¼

Z yð0Þ

a
qdx: ð43Þ
Let us define for each trajectory yðtÞ with yð0Þ ¼ y0 the ‘‘locally accumulated mass” M by:
Mðy0; tÞ ¼
Z yðtÞ

a
qðx; tÞdx:
Approximating each trajectory then directly follows from the equation Mðy0; tÞ ¼ Mðy0;0Þ.
To continue let us denote MiðtÞ ¼ Mðxi; tÞ, where xi is the ith meshpoint. To compute yðtÞ, we compare Mðy0; tÞ to the

increasing sequence fMiðtÞgi¼0���N and find j such that Mj�1ðtÞ 6 Mðy0; tÞ < MjðtÞ, which gives us that yðtÞ 2 ½xj�1; xjÞ. Then to
find yðtÞ recall that we have from (8) an expansion
qhðt; xÞ ¼
Xd

l¼0

clðtÞNj
lðxÞ; for x 2 ðxj�1; xjÞ;
where the cl ¼ clðtÞ are constants for every fixed t and the shape functions Nj
lðxÞ in our implementation are translated ver-

sions of polynomials fPlgd
l¼0 on [-1,1]. That is using fj : ½xj�1; xj	#½�1;1	 where
fjðxÞ ¼ 2
x� xj�1

xj � xj�1

� �
� 1;
we find, Nj
lðxÞ ¼ PlðfjðxÞÞ. Then solving for yðtÞ, formulated via
Mðy0; tÞ ¼ Mj�1ðtÞ þ
Z yðtÞ

xj�1

qhðx; tÞdx ¼ Mj�1ðtÞ þ
Z yðtÞ

xj�1

Xd

l¼0

clPlðfjðxÞÞdx;
can be recast by a change of variables, as solving for X in
Mðy0; tÞ ¼ Mj�1ðtÞ þ
2

xj � xj�1

� �Z X

�1

Xd

l¼0

clPlðzÞdz; ð44Þ
after substituting z ¼ fjðxÞ. But that just corresponds by the change of variables, to
X ¼ 2
yðtÞ � xj�1

xj � xj�1

� �
� 1:
Then a solution to X exists by the intermediate value theorem, and since the integrand is positive it is uniquely determined as
the only solution on [�1,1] to the polynomial equation of degree dþ 1 arising from (44). We may then, for example, in the
piecewise linear case (i.e. d ¼ 1) use the quadratic formula to recover X and hence the position of yðtÞ within Gj.
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Similarly, we also work in the other direction, with the balance of the mass in ½yðtÞ; xj	 such that the analogous integral
equation becomes:
Z 1

Y

Xd

l¼0

clPlðzÞdz;
which provides for a consistency check on the accumulated density in either direction. Consequently we have that the se-
quence fyðtÞgt¼1;...;T provides a numerical approximation to the position of a particle initially at y0 when t ¼ 0 at our given set
of later times.

This formulation holds as long as our hypothesis, uðaÞ 
 0, is satisfied. However, we can immediately extend this result to
include the case uðaÞ– 0. That is, after integrating in t we note that (42) becomes:
Z yðtÞ

a
qdx ¼

Z yð0Þ

a
qdxþ

Z t

0
quðaÞdt:
This gives us an alternative equation to find yðtÞ, where we must only add
R t

0 quðaÞdt to the accumulated density M at every t.
We further note that this basic framework may also be adapted to higher dimensions (see [33]).

We now use the transmissive boundary conditions to construct the accumulated mass trajectories derived above, as
they seem to represent more physically cogent boundaries with more consistent behavior. The results are shown in
Fig. 9, where the ‘‘Gaussian centered trajectories” are simply the trajectories containing the majority of the initial
density; that is, those trajectories whose initial positions are �1 au from the center of q0.

We further show that the MDG method is a conservative scheme. That is, in Fig. 10 we show that the change in
mass over the domain is equal to the flux of the mass in and out of the domain. In other words, we see linear error
growth at machine precision over 10,000 timesteps using the exact solution from Fig. 6. Additionally, and as in
Section 4, we have performed numerical experiments to investigate the L2-error in the mesh refinement case on this
system, again using (41), and found the same error scalings for fixed time T as those presented in Section 4, as
expected.

Another feature of the solution which is attractive in the sense of practical applications, is that the spatial invariance dem-
onstrated by the solutions. In Fig. 11 we show this feature, where the same calculation from Fig. 6 is graphed using 400
meshpoints and 10,000 timesteps in order to compare with the TDSE solution. However, as is clear from Fig. 11, with only
25 meshpoints the MDG solution provides the same qualitative answer. This is an important feature of the scheme, as in
chemical applications computations must scale in 3N dimensions, for N the number of atoms in the molecular system of
interest (see for example [31]). We note that in this section we have only shown a one-dimensional implementation of
the MDG scheme. Scaling this up to 3N dimensions presents the nontrivial technical challenge of automating finite element
mesh generation to arbitrary dimension, and then subsequently automating the generation of the corresponding hp variable
element-wise shape functions. This step is the major challenge to extending the MDG scheme to the full dimensionality of
the possibly 3N dimensional potential energy surface V ¼ VðR3NÞ that characterizes any particular chemical system (see
[31]).
6. Recovering w and S in both frames

Now that we have solutions in the Eulerian and Lagrangian coordinate frames as given in Section 5 we may recover the
important variables w and S in either frame. First we note that we may alternatively recover the trajectories using the solu-
tion U from Section 4 to solve the initial value problem:
Fig. 9. We solve the accumulated density trajectories from (43) using the transmissive solutions from qT in Fig. 8.



Fig. 10. Here we show mass conservation in the QHD regime given transmissive boundaries, where bf ¼
R
½0;TÞ

R
@X qdxdt is the boundary flux.

Fig. 11. Here we show the remarkable spatial invariance of the solution. These represent the same solution as that given in Fig. 6, except the left graph is
with 25 meshpoints and 100 timesteps, and the right at 50 meshpoints and 200 timesteps.

Fig. 1
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d~r
dt
¼ uðt;~rÞ with ~rjt¼0 ¼~r0: ð45Þ
We recover these~r by direct integration, and compare them to those computed via (43) (see Fig. 12), where we refer to the~r
trajectories computed in (45) as the ‘‘velocity pathlines.”

The trajectories computed using the velocity field (45) are shown in Fig. 12 and show qualitatively similar behavior to the
trajectories computed using the accumulated mass formulation in (43). There is no necessarily unique way of arriving at the
trajectories one chooses to represent the solution in the Lagrangian frame. For example, one may utilize a method which
weights the solutions between (43) and (45). That is, we may compute the trajectory positions via (45) and then offset these
by a weighted average of the density conservation in (43). We provide details on particular alternative in Appendix A and
show an example case.
2. We graph the quantum trajectories using (45) to solve for~r, which can be compared with the accumulated mass trajectories shown in Fig. 9.



Fig. 13. The Eulerian solution qðt; xÞ and the corresponding Lagrangian solution qðt;~rÞ for the same initial condition settings as in Fig. 9 using the
conservation form of the trajectories (43).

Fig. 14. A graph of the Eulerian solution Sðt; xÞ and the corresponding Lagrangian solution Sðt;~rÞ for the same initial condition settings as in Fig. 13 using the
conservation form of the trajectories (43).

Fig. 15. On the top we show the quantum trajectories using the offset method solution of the same problem in Fig. 12 with r ¼ 1; and on the bottom we
show the same trajectories using r ¼ 2.
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It is now possible to solve for a number of derived variables in either the Lagrangian or Eulerian frames in order to recover
the phase information of the quantum wave-packet associated to each characteristic pathline. First we recover the trajec-
tory-wise solutions qðs;~rÞ and uðs;~rÞ, and then compute the variables:
rxS ¼
ffiffiffiffiffi
m
p

u and w ¼ ffiffiffiffi
q
p

eiS=�h; ð46Þ
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where Sðs;~rÞ is the quantum action and wðs;~rÞ is the quantum wavefunction. Recall that Rðs;~rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qðs;~rÞ

p
as shown in Section 3,

such that using v for the velocity from Section 2 we recover from (46) the more familiar formulation:
rxS ¼ mv and w ¼ ReiS=�h: ð47Þ
It is important to note that up to a constant of integration, S and w are completely determined by the solution (14). Also,
(47) is satisfied in both reference frames, so we now have the following solutions:
qðs; xÞ;qðs;~rÞ;vðs; xÞ;vðs;~rÞ;wðs; xÞ;wðs;~rÞ; Sðs; xÞ; and Sðs;~rÞ: ð48Þ
These solutions are graphed in Figs. 13 and 14, where it is interesting to note that the two frames draw out different aspects
of the solution. While the Lagrangian frame tracks individual ‘‘particle” trajectories across the function profiles, it misses
some of the nuance in the continuous structure of the surface; which is naturally recovered by the Eulerian frame solution.
Furthermore, as lower resolution, we find that the conservation-based trajectories from (43) are more well-behaved than the
velocity based trajectories from (45).

7. Conclusion

We have presented a numerical solution to the quantum hydrodynamic equations of motion as posited in the context of
quantum hydrodynamics with chemical applications. Our approximate solution is a rescaled (in time) version of the stan-
dard QHD equations and is the first model of its type presented in a mixed discontinuous Galerkin framework in the context
in which it arises in chemical applications. Our solution further shows good stability, up to a stiffness of the system of equa-
tions which is a well-known feature of the QHD system of equations, and a scale invariance behavior which makes it very
appealing for the so-called ‘‘fast and dirty computations” often needed in realistic chemistry applications. Additionally we
have shown in a rigorous and consistent way how to prescribe proper boundary data, which is often bypassed in the usual
Lagrangian formulations of the system. We have further demonstrated that in the conservation formulation of this system,
the quantum wavefunction w and quantum action S, which are used as motivation for the derivation of QHD systems to begin
with (e.g. [25,6,40]), are in fact completely determined (up to a constant of integration) by the solutions . and v.

Finally, it is worth mentioning that these solutions are very closely related to quantum hydrodynamic solutions which
have been extensively studied in other fields (see [15,19,24,11,14]), but still maintain some important differences. One of
the most important and prohibitive aspects of the quantum chemical formulation of QHD, is that the potential surface V
arises from a multiple of 3N degrees of freedom of each quantum subsystem, for N the number of atoms in each molecular
subsystem (for example in an intramolecular rearrangement). This arises from the interpretation of the wavefunction w as
being the foundational variable in the dynamics of the quantum subsystem in the chemical models. Clearly, even for rela-
tively small molecules, this immediately leads to extremely difficult numerical problems. In fact, it seems that the greatest
difficulty in scaling to 3N dimensions is automating a hp variable mesh generating scheme along with corresponding shape
functions; which require a complicated and subtle boundary interconnectivity. However, when this is achieved, we feel that
the MDG scheme for the QHD system should be easily parallelizable, fast, robust, and, as demonstrated herein, accurately
reflect the mathematical character of the actual solution. Because of this, we present the MDG formulation as a viable solu-
tion to some of the many difficulties which arise in the complicated solution space of chemical quantum hydrodynamics,
where the scale invariance of the approximate MDG solutions makes it competitive with the more standard approximate
Lagrangian formulations.
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Appendix A. The conservation method of recovering trajectories in (43) and the velocity integration method of recov-
ering trajectories in (45) in no way exhaust the number of ways of representing solutions in the Lagrangian frame. In fact,
there are an infinite number of ways of choosing trajectories. We introduce a way of computing a subset of these, and refer to
these as ‘‘offset methods.”

The offset solution relies mainly on velocity integration but includes some information from mass conservation as fol-
lows: velocity integration provides an estimated position for each particle at the following time-step. Then one works
through particle by particle, starting at the new estimated position and using mass conservation to estimate the new posi-
tions of its neighbors (a tunable number of consecutive elements on either side) offset from the velocity estimate of the ‘cur-
rent’ particle. We set our tuning parameter to r here on both sides, though there is no reason a priori to choose a symmetric
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(with respect to either side) tuning parameter. Generically this provides a set of estimates for the position of each particle:
one directly from integration, and others via the relationship of that estimated position to the relative estimated position of
its nearest neighbors.

That is, if Pm
m is the velocity estimated position, and Pm

m�r and Pm
mþr are the positions of the particles on either side that den-

sity conservation requires, and applying our symmetry constraint gives for the new position that:
Pnew ¼ w0Pm
m þ

Xr

i¼1

wiP
m�i
m þwiP

mþi
m

� �
;

where the wi’s are the weights for each component, in our examples computed with a Gaussian weighting functions
xi ¼ e�ðlnð2Þ=r2Þi2 such that:
wi ¼ xi=
Xr

i¼0

xi for i ¼ 0; . . . ; r:
Then for r ¼ 1 we have w0 ¼ 1=2 and w1 ¼ 1=4. We show two examples of obtained offset trajectories in Fig. 15, which are
located at distinct locations in the solution space. Also note that these trajectories behave substantially different than those
in Figs. 9 and 12.
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